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By applying Poynting’s reasoning to time-independent laminar flows of viscous 

incompressible fluids we show that the energy flux for such systems can also be 

described by a Poynting vector. We discuss two examples of the Poynting model of 

energy flux: the familiar case of a constant electric current flowing through a wire and 

a new hydrodynamic case of vertical tube which drains a constant depth reservoir which 

is filled with a viscous fluid. Finally, we present often ignored physical constraints 

which these systems have to obey and modify Poynting vector so that it can be used, 

consistently, in order to obtain the actual energy flux for the two systems. 



Electric Charge, q

Charge carrier density, N

Electric current, J = Nqv

Electric field, E

Magnetic field, H
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Gravity = g Velocity, v (varies with radial location)

Height, h

Ground

Power input per unit volume = U =

(Force/unit volume).velocity = F.v

Constant depth, viscous, incompressible fluidInput

Cylinders

Tube



Electrical system (Magnetic field = B = μoμH)

U = F.v = v. Nq[E + (vxB)] = J.E     Nqv = J = curl(H)

& because curl(E) = 0,  E =  grad(φE) =  grad(φ)

∴ U = grad(φ).curl(W) where W = H

Axisymmetric Hydrodynamic System

F = ─ grad[ + ρgh] = grad(φL) and because div(v) = 0,  v 

= curl(W), & ∴ U = grad(φ).curl(W)

For both systems   U = grad(φ).curl(W) 

Power input per unit volume = U =

= (Force/unit volume).velocity = F.v               



Conservation of Energy Equation

div(S) + U = 0, S = energy flow per unit area 

associated with the flowing materials for the two systems.

Crucial Vector Identity  

div[grad(φ)xW]=W.curl[grad(φ)] ─ grad(φ).curl(W)

W.(0) ─ grad(φ).curl(W) = ─ U. 

∴ div[grad(φ)xW] + U = 0     and         div[S] + U = 0

Tempting [but illogical] Conclusion

grad(φ)xW is the actual energy flux S

In EM theory, div(S) = div[grad(φ)xW] = div(ExH)

The energy flux, S =  P = ExH is Poynting’s vector

The generalized Poynting vector is P where

P = grad(φ)xW



The Generalized Poynting Vector is P

where P = grad(φ)xW

Direction of P

P is perpendicular to grad(φ) [Because grad(φ).P = 0]

Thus, there is no component of P along the symmetry axis

Yet, for the EM model – if there is no axial energy flow then

there is no J; no J means no H and no H means, no ExH

Problem Resolution: Replace P by the correct axial flux, C

C in the two systems, must be solely along the flow axis. Hence,

S must be replaced by P + curl(T) = Cuz. [uz = axial unit vector]

div(C) + U = 0 = dC/dz + U so that C = [— Uz + G(r)]uz



Conversion of  Poynting’s vector, P(r), into C

ur ,uθ and uz = Unit vectors for 

cylindrical polar co-ordinates:

C = P(r) + curl(T) 

SOLUTION for T:  T = Tuθ = [P(r)z +(1/r) rG(r)dr]uθ

∴ curl(T) = — (dT/dz)ur + (1/r)[d/dr(rT)]uz

= − P(r)ur + {zdiv[P(r)] + G(r)}uz.

i.e. curl(T) = − P(r)ur + [ — Uz + G(r)]uz. Hence, as

required, P(r) + curl(T) = [ − Uz + G(r)]uz = C

G(r) represents the flux associated with energy 

stored in the moving material of the two systems



Based on the two examples treated in this

talk, it is clear that the discussions of energy

fluxes, in many contemporary textbooks, are

logically flawed and need to be revised.

Poynting’s vector is a particular solution

of the energy conservation equation which

does correctly predict the heat production

rate, U.

However, Poynting’s vector, P, and the

correct energy flux are perpendicular to each

other. Furthermore, the axial energy flux G(r)

which is needed to generate H [and, hence, P

(= ExH)] is, invariably, ignored.



To find the correct energy flux C

1) Calculate, U, the power deposited per unit volume per 

second using U = F.v where F is the force per unit volume 

which produces, v, the velocity of the flowing matter.   

2) Avoid  using  mathematical  identities to convert U into      

the divergence of a vector.

3) Solve the equation, div(C) + U = 0 with C directed along 

v. [i.e. Energy conservation.]

4) In the solution, include the energy flux which occurs  
because the flowing substance retains stored energy as it 
moves  through any particular system [thereby creating the 
term, G(r)uz]. 


